Université Paris Dauphine 2022-2023

Introduction aux séries temporelles

Partiel du jeudi 31/10/2024

Durée 2 heures - Documents et calculatrices non autorisés

Exercice 1 (10 points) 1. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus stationnaire de moyenne μ_X et de fonction d'autocovariance γ_X . Montrer que $\mathbb{E}[X_t^2]$ est bien défini et indépendant de $t\in\mathbb{Z}$.

- 2. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus stationnaire de moyenne μ_X et de fonction d'autocovariance γ_X . On pose $Y_t = (-1)^t X_t$ pour $t \in \mathbb{Z}$.
 - (a) On suppose que $(Y_t)_{t\in\mathbb{Z}}$ est un processus stationnaire. Montrer que $\mu_X=0$.
 - (b) Inversement, on suppose que $\mu_X = 0$. Montrer que $(Y_t)_{t \in \mathbb{Z}}$ est un processus stationnaire.
- 3. Soit l'équation $AR(\infty)$: $X_t = Z_t \sum_{k=1}^{\infty} \lambda^k X_{t-k}$, où $(Z_t)_{t \in \mathbb{Z}}$ est un bruit blanc fixé et $\lambda \in]0,1[$.
 - (a) Mettre l'équation sous la forme $F_{\alpha}X = F_{\beta}Z$, où l'on explicitera $\alpha \in \ell^1(\mathbb{Z})$ et $\beta \in \ell^1(\mathbb{Z})$.
 - (b) Déterminer $\gamma \in \ell^1(\mathbb{Z})$ tel que $X = F_{\gamma}Z$.
- 4. Soit $(Z_t)_{t\in\mathbb{Z}}$ un bruit blanc. Déterminer la solution de l'équation AR(2):

$$X_t = X_{t-1} - \frac{1}{4}X_{t-2} + Z_t \qquad t \in \mathbb{Z}.$$

Solution:

1. (1pt) Comme $X_t \in L^2$, $\mathbb{E}[X_t^2]$ existe et on a

$$\gamma_X(0) = \operatorname{var}(X_t) = \mathbb{E}[X_t^2] - \mu_X^2.$$

Donc $\mathbb{E}[X_t^2] = \gamma_X(0) + \mu_X^2$ est indépendant de t.

2. (a) (1pt) Si $(Y_t)_{t\in\mathbb{Z}}$ est un processus stationnaire, alors

$$\mathbb{E}[Y_t] = (-1)^t \mu_X$$

est indépendant de t, et donc $0 = \mathbb{E}[Y_0] - \mathbb{E}[Y_1] = 2\mu_X$. Cela montre que $\mu_X = 0$.

(b) (2pt) Inversement, si $\mu_X = 0$, alors $Y_t \in L^2$ pour tout t et $\mathbb{E}[Y_t] = 0$. De plus, pour tout $s, t \in \mathbb{Z}$,

$$cov(Y_s, Y_t) = (-1)^{s+t} cov(X_s, X_t) = (-1)^{t-s} \gamma_X(t-s),$$

puisque $(-1)^{s+t} = (-1)^{s+t-2s} = (-1)^{t-s}$. Donc $Y_t \in L^2$ pour tout t, $\mathbb{E}[Y_t]$ ne dépend que de t et $cov(Y_s, Y_t)$ ne dépend que de t-s, ce qui montre que (Y_t) est un processus stationnaire.

3. (a) (1pt) Posons $\alpha_t = \lambda^t$ is $t \in \mathbb{N}$ et $\lambda_t = 0$ si $t \leq 0$ et $\beta_t = \mathbf{1}_{t=0}$. Alors, comme $\lambda \in]0,1[$, $\alpha \in \ell^1(\mathbb{Z})$ tandis que $\beta \in \ell^1(\mathbb{Z})$ de façon évidente. Enfin,

1

$$F_{\alpha}X_t = \sum_{k \in \mathbb{N}} \lambda^k X_{t-k} = X_t + \sum_{k=1}^{\infty} \lambda^k X_{t-k} = Z_t = F_{\beta}Z_t.$$

(b) (2pt) On note que pour tout $t \in \mathbb{C}$ and |z| = 1, on a

$$P_{\alpha}(z) = \sum_{k \in \mathbb{N}} \lambda^k z^k = \frac{1}{1 - \lambda z}$$

puisque $|\lambda z| < 1$. Alors α est inversible d'inverse $\gamma \in \ell^1$ tel que $P_{\gamma}(z) = 1/P_{\alpha}(z) = 1 - \lambda z$, i.e., $\gamma_t = \mathbf{1}_{t=0} - \lambda \mathbf{1}_{t=1}$. Par théorème de cours, $F_{\gamma} = F_{\alpha}^{-1}$ et donc $X = F_{\gamma} \circ F_{\beta} Z = F_{\gamma} Z$.

4. (3pt - enlever 1 pt si méthode juste mais erreur de calcul) On remarque que $F_{\beta}X = Z$, avec $\beta \in \ell^1(\mathbb{Z})$ est tel que $P_{\beta}(z) = 1 - z + \frac{z^2}{4} = (1 - \frac{z}{2})^2$. Comme P_{β} a pour racine 2 > 1, on déduit d'un théorème de cours que β est inversible. On note $\gamma \in \ell^1$ son inverse, qui vérifie

$$P_{\gamma}(z) = \frac{1}{P_{\beta}(z)} = \frac{1}{(1 - \frac{z}{2})^2} \quad \forall z \in \mathbb{C}, \ |z| = 1.$$

Or

$$\frac{1}{1 - \frac{z}{2}} = \sum_{k=0}^{\infty} 2^{-k} z^k,$$

où la série entière à droite est infiniment dérivable sur $\{z \in \mathbb{C}, |z| < 2\}$. Donc

$$\left(\frac{1}{1-\frac{z}{2}}\right)' = \frac{1}{2} \frac{1}{(1-\frac{z}{2})^2} = \sum_{k=1}^{\infty} 2^{-k} k z^{k-1} = \sum_{k=0}^{\infty} 2^{-k-1} (k+1) z^k.$$

On en déduit que

$$P_{\gamma}(z) = \sum_{k=0}^{\infty} 2^{-k} (k+1) z^k,$$

soit $\gamma_k = 2^{-k}(k+1)\mathbf{1}_{k\geq 0}$. Un théorème de cours affirme alors que $X = F_{\gamma}Z$.

Exercice 2 (10 points) On se donne deux bruits blancs $(\epsilon_t)_{t\in\mathbb{Z}}$ et $(\eta_t)_{t\in\mathbb{Z}}$ tous deux de moyenne nulle et variance 1, et qui sont décorrélés : $\operatorname{cov}(\epsilon_s, \eta_t) = 0$ pour tout $s, t \in \mathbb{Z}$. On fixe $\phi \in]0,1[$ et $\psi \in]0,1[$ deux constantes. L'objectif de l'exercice est de montrer l'existence de deux processus stationnaires $(X_t)_{t\in\mathbb{Z}}$ et $(Y_t)_{t\in\mathbb{Z}}$ tels que

$$Y_t = \phi Y_{t-1} + X_t + \epsilon_t \quad \forall t \in \mathbb{Z},$$

$$X_t = \psi X_{t-1} + \eta_t \quad \forall t \in \mathbb{Z}.$$

On notera $\alpha \in \ell^1(\mathbb{Z})$ et $\beta \in \ell^1(\mathbb{Z})$ les filtres tels que $P_{\alpha}(z) = 1 - \phi z$ et $P_{\beta}(z) = 1 - \psi z$.

- 1. Montrer que le processus (X_t) existe et est unique.
- 2. Montrer que $W_t = X_t + \epsilon_t$ est un processus stationnaire.
- 3. En déduire que (Y_t) existe et est unique.
- 4. Montrer que

$$Z_t := F_\alpha \circ F_\beta Y_t \qquad t \in \mathbb{Z}$$

est un processus stationnaire et calculer sa fonction d'autocovariance.

5. En déduire qu'il existe $\theta \in (0,1)$ et un bruit blanc $(\zeta_t)_{t \in \mathbb{Z}}$ (dont on déterminera la variance $\sigma > 0$ en fonction de ϕ et θ) tels que

$$Z_t = \zeta_t - \theta \zeta_{t-1} \qquad \forall t \in \mathbb{Z}.$$

6. En déduire que Y vérifie une équation ARMA(p,q) en fonction de ζ ; on explicitera l'équation et on montrera que Y est donné par un filtre causal de ζ (on ne demande pas de calculer explicitement Y en fonction de ζ).

Solution:

- 1. (1pt) Soit $\beta \in \ell^1(\mathbb{Z})$ défini par $\beta_t = 1$ si t = 0, $\beta_t = -\phi$ si t = 1 et $\beta_t = 0$ sinon. L'équation de X s'écrit $F_{\beta}X_t = \eta_t$. Comme $P_{\beta}(z) = 1 \psi z$ n'a qu'une seule racine $1/\psi$ de module strictement supérieure à 1, un théorème de cours affirme que β est inversible et la solution de l'équation de X est alors unique et donnée par $X_t = F_{\beta^{-1}}\eta_t$.
- 2. (2pt il faut justifier soit en utilisant le calcul ci-dessous, soit en expliquant pourquoi X et ϵ sont décorrélés) On doit faire un peu attention ici car la somme de deux processus stationnaires n'est pas stationnaire en général. Notons que $W_t \in L^2$ pour tout $t \in \mathbb{Z}$ car X_t et ϵ_t sont dans L^2 . De plus

$$\mathbb{E}[W_t] = \mu_X + \mu_{\epsilon}$$

est indépendant de $t \in \mathbb{Z}$. Enfin, pour tout $t, h \in \mathbb{Z}$,

$$Cov(W_t, W_{t+h}) = Cov(X_t, X_{t+h}) + Cov(X_t, \epsilon_{t+h}) + Cov(\epsilon_t, X_{t+h}) + Cov(\epsilon_t, \epsilon_{t+h}).$$

Par bilinéarité de la covariance et sa continuité on a

$$Cov(X_t, \epsilon_{t+h}) = \sum_{k \in \mathbb{Z}} (\beta^{-1})_k Cov(\eta_{t-k}, \epsilon_{t+h}) = 0$$

puisque $(\epsilon_t)_{t\in\mathbb{Z}}$ et $(\eta_t)_{t\in\mathbb{Z}}$ sont décorrélés. De même

$$Cov(\epsilon_t, X_{t+h}) = \sum_{k \in \mathbb{Z}} (\beta^{-1})_k Cov(\eta_t, \epsilon_{t+h-k}) = 0.$$

Donc

$$Cov(W_t, W_{t+h}) = \gamma_X(h) + \gamma_{\epsilon}(h)$$

est indépendant de t.

- 3. (1pt) Soit $\alpha \in \ell^1(\mathbb{Z})$ défini par $\alpha_t = 1$ si t = 0, $\alpha_t = -\phi$ si t = 1 et $\alpha_t = 0$ sinon. Comme W est un processus stationnaire, l'équation de Y s'écrit $F_{\alpha}Y = W$. Comme $P_{\alpha}(z) = 1 \phi z$ n'a qu'une seule racine $1/\phi$ de module strictement supérieure à 1, un théorème de cours affirme que α est inversible et que la solution de l'équation pour Y est alors unique et donnée par $Y_t = F_{\alpha^{-1}}W_t$.
- 4. (2pt) Avec les notations précédentes, on a $Z_t = F_\alpha \circ F_\beta Y_t$. Comme Y est un processus stationnaire et $\alpha, \beta \in \ell^1(\mathbb{Z})$, le théorème de filtrage affirme que Z est un processus stationnaire. Notons que, comme le produit * est commutatif dans $\ell^1(\mathbb{Z})$, on a

$$Z_t = F_{\alpha} \circ F_{\beta} Y_t = F_{\alpha * \beta} Y_t = F_{\beta} \circ F_{\alpha} Y_t = F_{\beta} W_t = F_{\beta} X_t + F_{\beta} \epsilon_t$$
$$= \eta_t + \epsilon_t - \psi \epsilon_{t-1}.$$

On peut maintenant calculer la fonction d'autocovariance de Z: si $h \ge 0$, et comme les processus ϵ et η sont des bruits blancs décorrélés et de variance 1,

$$\gamma_Z(h) = \cos\left((\eta_0 + \epsilon_0 - \psi \epsilon_{-1}), (\eta_h + \epsilon_h - \psi \epsilon_{h-1})\right)$$
$$= \cos\left(\eta_0, \eta_h\right) + \cos\left(\epsilon_0 - \psi \epsilon_{-1}, \epsilon_h - \psi \epsilon_{h-1}\right)$$
$$= \mathbf{1}_{h=0} + (1 + \psi^2) \mathbf{1}_{h=0} - \psi \mathbf{1}_{h=1}.$$

Donc, comme γ_Z est paire,

$$\gamma_Z(h) = (2 + \psi^2) \mathbf{1}_{h=0} - \psi \mathbf{1}_{|h|=1} \qquad \forall h \in \mathbb{Z}.$$

5. (3pt) Si θ et ζ existent, alors par un calcul classique

$$\gamma_Z(h) = \sigma^2(1+\theta^2)\mathbf{1}_{h=0} - \sigma^2\theta\mathbf{1}_{|h|=1} \qquad \forall h \in \mathbb{Z}.$$

Vu la question précédente, on cherche donc θ et σ tels que

$$\sigma^2(1+\theta^2) = 2 + \psi^2 \qquad \text{et} \qquad \sigma^2\theta = \psi.$$

On peut prendre $\sigma = \sqrt{\psi/\theta}$ et l'équation pour θ s'écrit alors $f(\theta) := \theta^2 - \psi^{-1}(2 + \psi^2)\theta + 1 = 0$. Or f(0) > 0 et f(1) < 0 (car $\psi \in]0,1[$): il donc existe $\theta \in]0,1[$ tel que $f(\theta) = 0$.

On définit le filtre $\gamma \in \ell^1(\mathbb{Z})$ par $\gamma_0 = 1$, $\gamma_1 = -\theta$ et $\gamma_t = 0$ sinon. Par des arguments similaires à ceux évoqués plus haut, γ est inversible et on doit donc avoir $\zeta = F_{\gamma^{-1}}Z$. Reste à vérifier que ζ défini ainsi est un bruit blanc de variance σ^2 . Rappelons que $\gamma_t^{-1} = \theta^t \mathbf{1}_{t \geq 0}$. Donc, pour $t \geq 0$,

$$\gamma_{\zeta}(t) = \sum_{j,k \in \mathbb{N}} \gamma_j^{-1} \gamma_k^{-1} \gamma_Z(t - k + j)$$

$$= \sum_{j,k \in \mathbb{N}} \theta^{j+k} \left((2 + \psi^2) \mathbf{1}_{t-k+j=0} - \psi \mathbf{1}_{t-k+j=1} - \psi \mathbf{1}_{t-k+j=-1} \right)$$

Si $t \geq 1$, on trouve en tenant compte des relations entre σ , θ et ψ :

$$\gamma_{\zeta}(t) = \sum_{j \in \mathbb{N}} \theta^{2j+t} \left((2 + \psi^2) - \theta^{-1} \psi - \theta \psi \right) = \sum_{j \in \mathbb{N}} \theta^{2j+t} \left(\sigma^2 (1 + \theta^2) - \sigma^2 - \sigma^2 \theta^2 \right) = 0,$$

tandis que, si t = 0, on trouve

$$\gamma_{\zeta}(t) = \sum_{j \in \mathbb{N}} \theta^{2j+t} \left((2 + \psi^2) - \theta^{-1} \psi - \theta \psi \right) + \theta^{-1} \psi = \sigma^2.$$

On peut donc conclure que ζ est un bruit blanc de variance σ^2 .

6. **(1pt)** Comme

$$Z_t = (1 - \phi B)(1 - \psi B)Y_t = F_\alpha \circ F_\beta Y_t = F_\alpha (Y_t - \psi Y_{t-1}) = Y_t - \psi Y_{t-1} - \phi (Y_{t-1} - \psi Y_{t-2})$$

= $Y_t - (\psi + \phi)Y_{t-1} + \psi \phi Y_{t-2}$,

ce qui se réécrit comme

$$Y_t = (\psi + \phi)Y_{t-1} - \psi\phi Y_{t-2} + Z_t = (\psi + \phi)Y_{t-1} - \psi\phi Y_{t-2} + \zeta_t - \theta\zeta_{t-1}$$

Donc Y est un processus ARMA (2,1) d'équation

$$Y_{t} = (\psi + \phi)Y_{t-1} - \psi\phi Y_{t-2} + \zeta_{t} - \theta\zeta_{t-1}$$

Comme les racines du polynôme $1 - (\psi + \phi)z + \psi\phi z^2$ sont $1/\phi > 1$ et $1/\psi > 0$, on déduit d'un résultat de cours que Y donné par un filtre causal de ζ .